IRYSS.

Iryss Tech Build Plan



Table of Contents

1. Internal Al DeVeloper COCKPIT ettt sse st essen s s e bbbt senans 3
2. Web Scraping & OULreaCh ENGINE... ettt aesae s 5
3: Universal Middleware INtegration LAYEr .. et sessesse s sassas s 7
4. Customer ACQUISITION ENGINE ..ttt ettt st 9
5. Marketplace Orchestrator & Core Architecture (Deity-Based).....eeeeerevereennn, n
6. OMS & SHIPPRING ENGING..tieeeee ettt bbbttt bbbt 13
7. Payments & ACCOUNTING MICIOSEIVICE ...ttt senes 15
8. CMS Microservice (Content Management SYStEM) ... 18
9. Localization & MUltiiNQUAl ENGINE..... ettt aesae s sassans 22
10. Marketplace Dashboards SYSTEM ...ttt saes 26
11. Data Pooling & Warehouse INfrastrUCTUre ... 29
12: ANAlytics & INSIGNTS PIAtfOrM . 31
13. Storefronts Infrastructure (Shopify AIRErNAtiVE) ... 34
14. Al Application Layer (Personalization & AUtOMation) ... 36
15. Event & NOtIfICaAtioN MICIOSEIVICE ...t sssse s ssssssiens 40
16. Consent, Cookie & GDPR MaAN@QEl ...t ssssss s s sasssssanns 42
17. Messaging & CNat MICIOSEIVICE ...t 44
18. 11YSS TV INTIASTIUCTUIE ...ttt 46
19. Mobile APP — INYSS MaArKELPIACE ... 49
20. MODIIE AR = STOMEITONTS ettt senaes 51
21. MODIIE AP = I1YSS TV ettt 53
22. POS & IN-PErson SaAlES SYSTEMN ...ttt 55
23 —Iryss Smart PIM (Product Information Management System)......cceceeereerennne. 57



1. Internal Al Developer Cockpit

Centralized Al-powered development environment used by all internal
engineering teams to accelerate build speed, standardize quality, and train
proprietary Al models.

What it s

A unified developer cockpit integrating the best-in-class Al tools for code

generation, prompt workflows, documentation, and testing all embedded into a

single interface. Every action is logged and used to automatically train a
proprietary Iryss Al model, enabling the system to improve over time and
become highly optimized for Iryss-specific platform builds.

What It Enables

Instant productivity boosts from day one using top Al coding tools (e.g.
GitHub Copilot, Cody, CodeWhisperer, GPT Assistants)

Central dev hub with standardized prompts, reusable flows, and versioned
knowledge

Self-training Al model that learns from real Iryss workflows to generate
high-accuracy, architecture-aware output over time

Long-term reduction in dev time, bugs, and inconsistencies across services

Full telemetry on prompt usage, dev pain points, and code refactors used
for continuous system optimization

Headline Features

Integrated Prompt Interface for best-in-class Al dev tools (multi-provider)
Code Output Logging and prompt-response versioning

Custom Prompt Library with reusable flows and Iryss-specific logic (e.g.
order routing, OMS logic)

Al Feedback Loop Engine feeds all activity back into the internal model
trainer



« Knowledge Memory + Context Indexing for project docs, past prompts,
error resolutions

e Structured Data Export for training the Iryss LLM across services
« Role-Based Access frontend, backend, devops, Al/ML teams

e Optional: Internal CLI or VSCode plugin

How It Works

All development is funneled through the cockpit using a standard prompt
pipeline. Each prompt and code output is logged with metadata (context, user
role, service layer, timestamp). This data is continuously used to fine-tune a
custom Iryss Al model transforming real-world dev activity into a self-training
engineering assistant tailored to your system.

Why It Matters

This cockpit gives Iryss a foundational advantage: the ability to build faster today
while simultaneously training an elite internal Al. Over time, Iryss will run a high-
performance proprietary engineering model that understands your
microservices, APIs, schema, and naming conventions better than any generic
tool ever could becoming a competitive edge in speed, precision, and
maintainability.

Team & Build Scope
e Initial Build Team: 1 Al-focused full-stack engineer
e Ongoing Training: Passive (via use) + periodic LLM fine-tuning if needed
e Timeframe: ~3-4 weeks for full cockpit MVP with top tools integrated

« Dependencies: None this is built first and used to accelerate all 24 other
projects



2. Web Scraping & Outreach Engine

What it is

A web scraping and task automation platform that powers Iryss’s business
development. It continuously scrapes websites, social platforms, and directories to
extract leads, products, trends, and competitor data. It automates everything
from data extraction to lead enrichment, CRM syncing, and outreach execution all
designed to scale brand acquisition, product sourcing, and internal decision-
making.

What it enables
e Automated lead generation for brands, influencers, and resellers
e Dynamic product scraping for trend discovery and design inspiration

e Real-time enrichment of contact data and segmentation by channel or
region

e Automatic CRM sync and deduplication with lead tagging

e Segmented outreach queues with integrated tracking (email sent, opened,
replied, qualified)

¢ Middleware integration for pushing scraped product catalogs into the Iryss
system

e Dashboards for team-wide visibility on lead segments, pipeline status, and
trend data

Core Features
o No-code scraping builder with XPath/selector config
¢ Rotating proxy pool to avoid detection and blocks
e Scraping modules for Shopify, Instagram, Faire, Ankorstore, etc.
e Lead enrichment: email, phone, category, product pricing, region
e CRM sync with tag logic and duplicate prevention

¢ Automated outreach queue with response logging and status changes



Manual recheck Ul for edge cases or flagged data

Internal dashboards for viewing trends, sesgment insights, and sourcing
leads

Export tools for team-specific lists and actions

Build Details

Frontend: React-based interface for scraper setup, lead browsing, outreach
status

Backend: Node.js or Python scraping jobs, Redis or BullMQ for queue
mManagement

Database: PostgreSQL + Elasticsearch for structured lead storage and
query

Hosting: Docker/Kubernetes microservices with cloud autoscaling
Integrations:

o Iryss CRM or external CRM

o Middleware (product ingestion sync)

o SMTP or third-party email automation

o Optional webhook support for advanced targeting

Team & Timeline

Team: 1 backend (scraper, queue, enrichment), 1 frontend (Ul, CRM logic)

Build Time: ~6-8 weeks for MVP covering scraping, enrichment, CRM sync,
and outreach



Long-Term Notes

Powers scalable acquisition of supply (brands), demand (resellers), and

promotion (influencers)
Key pipeline input for marketing, trend analysis, and Al training

Critical foundation for internal targeting, sourcing, and onboarding

workflows

3: Universal Middleware Integration Layer

What lt s
The Universal Middleware acts as the connective tissue between all product

sources (brands, resellers, scraping tools) and all destinations (lryss Marketplace,
Storefronts, Shopify, WooCommerce, etc.). It ingests, validates, transforms, and
distributes product data across the ecosystem. It is the backbone of data fluidity.

What It Enables

Seamless onboarding for any brand or product source
Live product syncing across Iryss and third-party storefronts
Standardized schema handling for cross-platform consistency

Central control over enrichment, errors, fallback values, and

transformations

Feature Scope

Product Ingestion Connectors: CSV, API, Shopify, WooCommerce,
Redicom, Magento, etc.

Schema Mapping Studio: Drag-and-drop field alignment Ul with Al
fallback suggestions

Validation Rules Engine: Detects missing fields, malformed values, illegal

characters, etc.



Inline Fix Tool: Allows users to patch issues inline before sync (e.g. fill price,
resize image)

Default Field Filler: Auto-fills common fields (e.g. default shipping country,
tags)

Live Preview Tool: Simulate how a product will look on Iryss before syncing

Data Versioning & Audit Logs: View all past versions, track changes per
item

Product Bundling Support: Allow grouping of SKUs into shoppable sets

Translation Fallbacks: Use multilingual fallback logic for missing fields
(integrated with Localization microservice)

Rate Limiting & Queue Throttling: Protect infrastructure and vendors
during high-volume sync

Build Strategy

Backend: Node.js/Nest]S with job queue management (e.g. BullMQ)
Frontend: React (admin Ul and connector config dashboard)

Database: PostgreSQL for structured product records, Redis for sync
queues

File Management: S3 or equivalent for image ingestion and caching
API: REST/GraphQL exposed for sync triggers and store integrations

Security: JWT/role-based access control per vendor/brand

Team Required

2 Backend Devs (connectors, queue handling, transformation logic)
1 Frontend Dev (Ul for schema mapping, live preview, inline fix)

1 Full-stack or DevOps (infra, queue tuning, observability setup)

Estimated Time to Build: 6 weeks (MVP), extendable with new connectors



Future Considerations
e Add Al enrichment scoring and smart defaulting
e Add vendor self-service ingestion flows (SaaS UX layer)
e Auto-detect and merge duplicates across data sources
e Webhook triggers to notify third-party systems on sync success/failure

This is one of the most critical infrastructure layers in the Iryss ecosystem and
must be engineered for scale, reliability, and flexibility from day one.

4. Customer Acquisition Engine

What it is

A full-stack acquisition and retargeting engine for driving paid growth across Iryss
Marketplace and Storefronts. Combines product feed automation, pixel tracking,
funnel logic, and Al-powered campaign execution into a unified microservice.
This system ensures real-time targeting across Meta, TikTok, Google, and future
DSP platforms, optimized for high ROAS and zero manual intervention.

What it enables

End-to-end paid traffic growth across Marketplace and all Storefronts

Dynamic product ads based on real user behavior and product feed sync
¢ Segmented retargeting flows and predictive scoring per SKU and user
e Live campaign syncing across Meta, Google, TikTok with dynamic creatives

e Attribution, budget rules, frequency control, and cross-platform
suppression

e Future integration with DSPs like Criteo, AdRoll, and The Trade Desk



Core Features

e Pixel & Conversions API Layer
Fires real-time events (ViewProduct, AddToCart, Purchase) across platforms
using Meta Pixel, TikTok Pixel, Google GTM, and server-side CAPI.

e Product Feed Engine
Auto-generates and syncs XML/CSV product feeds (Meta, Google, TikTok).
Feeds update daily via cron and match exact product_id logic.

e« Dynamic Campaign Builder
Auto-creates DPA campaigns (Meta, Google Performance Max, TikTok
Catalog Sales). Personalized ads trigger by user activity and feed matching.

e Funnel Segmentation Rules
Audiences built dynamically based on session depth, recency, cart intent,
and cross-channel behavior.

o Budget & Frequency Control
Sets automated bidding rules (e.g. ROAS > 3.0 = scale; < 1.0 = pause).
Prevents overexposure and suppresses fatigued users.

e Multi-Channel Dispatch Layer (DSP-Ready)
Central event broker routes all user activity to Meta, Google, TikTok, Klaviyo,
and future RTB/DSP endpoints via standardized schema.

e Consent-Gated Pixel Logic
Ensures full GDPR compliance by gating tracking pixels behind user
marketing consent status. Integrates with Cookie Manager microservice.

o Performance Dashboard Connector
Syncs ROAS, spend, and conversion data back into Marketplace/Storefront
dashboards. Enables live campaign metrics per brand/reseller.

Build Details

e Frontend: Admin config tool for feed setup, audience control, pixel
monitoring, campaign status

e Backend: Node.js or Python microservice with Meta, Google, TikTok API
integrations; feed generator; event broker

e Infra: Cloud-synced product feeds, containerized event dispatch system,
Redis-based suppression logic

10



Team & Timeline

Team: 1 full-stack engineer (pixel + backend), 1 frontend (admin + feed
config), 1 part-time AI/ROAS ops analyst

Build Time: 6-8 weeks to MVP with full Meta/Google/TikTok integration and
automated product feed sync

Long-Term Notes

RTB and DSP integrations will require only a webhook plugin due to
broker-layer architecture

All data is fed to the Al microservices and Data Pooling system for
conversion scoring, ad prediction, and funnel optimization

5. Marketplace Orchestrator & Core Architecture
(Deity-Based)

What it is
The foundational commerce infrastructure powering the entire Iryss ecosystem
built using MACH architecture (Microservices, API-first, Cloud-native, Headless).

Based on Deity’s orchestration model, this orchestrator routes all commmerce logic

across B2C and B2B flows, handles multi-role access, and serves as the central
rules engine, logic layer, and integration hub for the marketplace.

What it enables

Unified backend for B2C marketplace, B2B resellers, and vendor operations

Real-time routing of orders, roles, product updates, and marketplace
events

Multi-role access logic (admin, brand, reseller, influencer, customer)
Plug-and-play microservices with fully decoupled system layers
No-code workflow builder for non-technical marketplace ops

Fast integration of new services, apps, and third-party tools

11



Core Features

e Microservices-Based Commerce Logic
Each function (checkout, pricing, routing, roles, etc.) runs as an isolated
service to ensure modularity, resilience, and scalability.

e API Gateway + GraphQL Federation
All APIs are managed via Kong Gateway, and unified through a GraphQL
federated layer to simplify external access and platform integration.

e Multi-Role Access & Control
Role-based logic is handled at the architecture level (brand, vendor,
reseller, customer, admin, influencer). Each user sees only relevant flows.

¢« No-Code Orchestration Studio
Visual interface for configuring product rules, marketplace logic, workflows,
and triggers without engineering help (based on Deity Studio).

e Event-Driven Rule Engine
Real-time business logic (e.g. order routing, status updates, stock
allocation) triggered via Kafka or RabbitMQ pub/sub model.

e Real-Time Sync Layer
Ensures product and inventory data is synced live between vendor systems,
storefronts, and the main marketplace through middleware pipes.

e Marketplace Governance & Role Routing
Admins can pause sellers, manage tiers, and route product visibility based
on compliance, stock, returns, or sales behavior.

e Performance-Optimized Checkout System
Includes region-aware pricing, dynamic shipping options, and fulfillment
routing based on OMS logic and buyer geography.

Build Details

e Backend: Node.js + NestJS architecture, GraphQL Federation, Kafka-based
event bus, Kong API gateway

¢ Frontend: React + Next.js admin and routing Ul for orchestration studio
and core rule logic management

e Integration: Native support for CMS, OMS, Payments, Middleware, and Al
modules via API orchestration layer

12



Team & Timeline

e Team: 2 backend (orchestration + APIs), 1 frontend (studio + rule builder), 1
systems architect

e Build Time: 10-12 weeks for core platform MVP with routing, roles, and no-
code studio logic

Long-Term Notes
o All subsequent services (storefronts, TV, apps) plug into this architecture
e Enables Iryss to scale globally while enforcing centralized control and logic

e All future Al decision-making, pricing, or fraud logic integrates via this hub

6. OMS & Shipping Engine

What it is

A centralized order management and logistics orchestration system. This
microservice handles the full lifecycle of order routing, fulfillment, return
processing, shipping label generation, and multi-location inventory sync across all
Iryss channels B2C, B2B, storefronts, and POS. It acts as the logistical brain behind
every transaction, ensuring correct, efficient, and rule-compliant fulfillment.

What it enables
e Real-time order routing across vendors, 3PLs, and Iryss warehouses
e Location-aware shipping decisions (e.g. EU vs Egypt fulfillment)
e Dropship and wholesale support with rules-based logic
e Multi-warehouse stock allocation and sync
e Automated shipping label generation, courier selection, and return logic

o Carrier fallback routing and dynamic shipping options at checkout

13



Core Features

e Unified Order Routing Engine
Routes each order to the correct fulfillment source based on stock
availability, region, fulfillment mode (B2B vs B2C), and vendor settings.

e Multi-Warehouse Inventory Sync
Tracks inventory across Iryss hubs, brand-owned locations, and 3PL
partners with automated updates and low-stock alerts.

e Dropship vs Wholesale Logic
Routes orders by type: dropship orders go to vendors; wholesale orders use
warehouse logic and credit terms.

e Shipping Label Automation
Generates dynamic labels using integrated APIs (Sendcloud, FedEx,
Aramex). Handles both outbound and return shipments.

e Return Management Ruleset
Determines correct return location (brand or Iryss) based on who fulfilled
the original shipment. Supports return fees, return windows, and auto-
restocking.

e Shipping Zones & Carrier Rules
Enables dynamic carrier selection by region, speed, cost, and partner
preference. Supports pickup point delivery and customer location logic.

e Order Event Sync
Sends real-time status updates (fulfilled, delayed, returned) to dashboards,
customer notifications, and the analytics engine.

Build Details

o« Backend: Node.js + microservices with rule-based routing, stock logic, and
shipping label generation

e Integrations:
o Sendcloud (multi-carrier shipping automation)
o FedEx, Aramex, DHL (direct shipping APIs)
o Middleware (product/stock sync)

o Payments (for shipping cost and refunds)

14



o Database: PostgreSQL + Redis for order events, routing states, and carrier
preferences

Team & Timeline

e Team: 2 backend (routing logic + integrations), 1 systems designer for
fulfillment logic, optional frontend if standalone Ul needed

e Build Time: 6-8 weeks for MVP (routing + shipping integration + return
flow)

Long-Term Notes

e This system is essential for fulfillment automation across Iryss and will feed
into analytics, fraud signals, and Al delivery predictions.

e Built to support multi-region expansion from day one, including hybrid
models (e.g., brand ships from Egypt; Iryss handles EU returns).

e Enables vendor compliance checks (e.g., delay penalties, shipping cutoff
alerts) via order behavior tracking.

7. Payments & Accounting Microservice

What it is

A full-spectrum payments and financial operations engine for the Iryss
ecosystem. This microservice manages all transactions, payouts, invoicing,
subscriptions, commissions, affiliate earnings, and financial compliance across
Marketplace, Storefronts, and Iryss TV. It acts as the central automation layer for
all revenue movement and financial reporting.

What it enables

e Real-time checkout processing, vendor payments, and margin
reconciliation

e Subscription billing for brands, resellers, and service providers (e.g.
€75/month plans)

15



o Affiliate and influencer earnings calculation for Iryss TV and Storefronts
e Wholesale invoicing, credit tracking, and Net 30/60 payment workflows
e Automated VAT/tax logic across all EU markets and multiple currencies
e Brand co-op ad spend billing (shared performance campaigns)

¢ Unified financial reporting across all user types and platform roles

Core Features
e Checkout & Transaction Routing

o Handles all B2C and B2B transactions across storefronts and
marketplace

o Routes payments to appropriate merchant (Iryss, vendor, or 3rd-
party)

o Waits for return window before triggering payouts where applicable
e Vendor & Reseller Payouts

o Supports fixed commission, tiered margin, or hybrid payout models

o Calculates and executes payouts by role (brand, reseller, influencer)

o Connects to dashboard for downloadable monthly statements and
performance history

o Affiliate & Influencer Earnings
o Tracks commissions earned via Iryss TV or Storefront sharing

o Automates payouts to influencers or brand partners with time-based
reporting

o Supports both fixed per-sale payouts and revenue-share logic
¢ Invoice & Credit Management

o Auto-generates invoices for B2B wholesale orders (with VAT/EORI
data)

o Tracks outstanding balances and Net 30/60 term compliance
o Credits store value automatically for unfulfilled or partially refunded

items

16



e Ad Co-Op & Performance Billing

o Calculates brand contributions for shared ad campaigns
(Meta/TikTok co-branded)

o Allocates spend based on clicks, views, or attributed conversions

o Adds charges to end-of-month statement with full transparency
e« Tax & Currency Handling

o Multi-currency checkout and accounting

o OSS VAT compliance for EU sales, including local tax breakdown per

country

o Export-ready transaction logs for accounting teams and auditors

¢ Financial Automations

o Sends real-time webhook events to OMS, dashboards, or customer

alerts

o Triggers invoice emails, payout confirmations, overdue alerts

o APIl-ready for accounting tools (Xero, QuickBooks, Zoho)

Build Details

e Backend: Node.js or Python microservice with currency and logic layers
o Database: PostgreSQL for transactions, invoices, payout history
e External Integrations:

o Stripe or Adyen for checkout/payment handling

o Klarna, PayPal for alternative payment options

o VAT APIs (e.g., Avalara) for region-specific tax calculations

o Sendcloud, FedEx for shipping cost reconciliation

17



Team & Timeline

e Team:1senior backend (payment logic), 1 integrations/devops, 1 part-time
frontend for billing Ul

e Build Time: ~6-8 weeks MVP with Stripe, payouts, invoice flow, and
dashboard sync

Long-Term Notes
e This service becomes the backbone of Iryss's monetization strategy

e Supports future B2B credit risk scoring, dynamic pricing billing, and ad-
based performance invoicing

e Must remain modular to plug into new revenue streams (subscriptions,
SaaS models, influencer shops)

8. CMS Microservice (Content Management System)

What it is

A unified, headless content management microservice used to power structured
and unstructured content across the entire Iryss platform including the
Marketplace, Storefronts, and Iryss TV. It handles product stories, blog articles,
campaign pages, rich media, and promotional content. Unlike Deity Studio
(which handles drag-and-drop Ul layout), the CMS focuses on managing content
data, editorial workflows, and media assets delivered via API to all frontends.

What it enables

e Centralized content creation, editing, and publishing for all platform
interfaces

¢ APIl-based content delivery to the Marketplace, Storefronts, Iryss TV, and
Mobile Apps

o Flexible content models (blog posts, campaign pages, rich product stories)
e Global asset management (images, videos, metadata)

e Multilingual content fields and region-based publishing control

18



Full editorial workflow: draft, review, approve, schedule
SEO metadata control and integration with the Localization Microservice

Easy reuse of content blocks across storefronts and campaigns

Template-based content assembly with dynamic content injection (e.g., by

product tag or collection)

Embeddable shoppable widgets synced from PIM for rich content
commerce

Parameterized smart content blocks (e.g., "Spotlight by tag", "Top sellers
per region")

Personalization-aware delivery rules by user role, region, or behavior

Creator-linked CMS structures (bios, campaign tagging, influencer stories)

Scoped asset libraries and content tenancy per brand

Localized variant previews to test layout with translated content
Al-assisted content suggestions for SEO fields, intro blurbs, and alt text
Real-time sync with product and campaign data from the PIM

Clean decoupling of layout (Deity Studio) vs content (CMS API)

Core Features

Modular content types (blogs, banners, landing pages, featured stories)
Global asset manager with CDN integration and media tagging
Role-based publishing workflows for brand teams and editorial teams
Real-time preview of content including localization variants and per-role
visibility

Media grouping and tagging by campaign, product category, or creator
Rich text editor with embedded media and internal links

Scheduled publishing, version history, and rollback

API delivery for frontend rendering via GraphQL/REST

SEO meta fields and Open Graph data per language and region

19



Parameterized block logic with automatic rendering based on tag,
collection, or creator ID

Shoppable widgets rendered from live PIM data (SKU, price, availability,
region)

Dynamic hide/show logic for out-of-stock or inactive products
Personalization delivery logic (location, user segment, logged-in role)
Full multilingual field support with fallback logic

Scoped CMS folders and asset permissions by brand or influencer

Creator model support: campaign participation, linked stories, media
blocks

Preview Ul with real-time regional content simulation

Optional Al prompt engine to assist in writing metadata, alt text, intros, and

SEO summaries

How it works with Deity

All layout and design is handled in Deity Studio, the low-code drag-and-
drop builder used by Marketplace and Storefronts

The CMS plugs into Deity Studio via content APIs feeding content blocks,
text, imagery, and asset metadata into the drag-and-drop frontend

For Storefronts, the same CMS provides shared access to brand blogs,
influencer stories, and campaign content with editing permissions based
onrole

Smart blocks and widgets from the CMS can be placed visually via Deity
Studio while content is managed centrally

Build Details

Frontend: React-based admin Ul for editorial teams and brand operators
Backend: Node.js or NestJS headless CMS engine (Strapi-style or custom)

Database: PostgreSQL for structured content + S3/Cloudinary for assets

20



e Auth & Permissions: Role-based access for internal, brand, and creator
users

e APIs: GraphQL/REST endpoints for content delivery and preview
e Integrations:

o Localization Engine (Project 9)

o Smart PIM (Project 23)

o Personalization Engine (Project 14)

o Deity Studio for layout composition

Team & Timeline

e Team:
o 2 full-stack developers (CMS backend + admin Ul)
o 1frontend developer (real-time preview, role-based UX)
o 1backend developer (PIM sync, personalization hooks)
o 1systems architect (multi-tenant permissions, integration layer)
o 1QA engineer (workflow, access control, publishing logic)
o Optional: 1Al engineer (content generation prompt engine)

e Timeline:

o 8-10 weeks for full CMS MVP with personalization, PIM hooks, and
preview

o +2-3 weeks if Al editorial suggestion layer is added

o Total build: 10-13 weeks for enterprise-grade system

Multi-Stage Rollout

e Stage 1 (Marketplace): CMS used to power homepage, stories, banners,
campaigns, SEO, and product stories

e Stage 2 (Storefronts): Brands and influencers gain CMS access to manage
blogs, lookbooks, announcements, and shoppable content



e Stage 3 (Iryss TV): CMS content supports show metadata, creator bios,
product-linked promo stories, and embedded drops

Final Notes
e This CMS does not handle page layout that is done in Deity Studio

e Itisfully decoupled and serves as a central, multi-platform content
infrastructure

e All content can be localized via the Localization Engine (Project 9)

e Product references, tags, and SKU metadata are synced from the Smart
PIM (Project 23)

e Built for long-term extensibility and high-scale performance across
thousands of storefronts, creators, and campaigns

¢ Aligned with marketplace governance, brand permissions, and modular
deployment

9. Localization & Multilingual Engine

What it is
A centralized localization microservice powering all language, regional, and

currency logic across the Iryss ecosystem including the Marketplace, Storefronts,

Iryss TV, the CMS, the Smart PIM, and Mobile Apps. It ensures a consistent,
scalable localization framework for all Iryss content and commerce experiences
without duplicating logic across services.

This engine manages translation flows, currency formatting, region-specific
routing, fallback behavior, SEO localization, and media substitution. All frontend
systems and backend modules plug into this layer to deliver fully localized
experiences at scale.

22



What it enables
e Platform-wide localization across products, content, campaigns, and Ul

e Auto-translation of structured data (products, metadata, CMS blocks) with
human override interface

e Language-based routing (e.g. /fr/, /de/) and locale auto-detection via IP or
browser headers

e Multi-currency pricing display with live or fixed exchange rate logic
e Per-market homepage, campaign, and content variation logic

e SEO-localized pages with canonical URL control and hreflang tag
automation

e Real-time switching of language and currency via Ul or geo-detection
e Dynamic fallback rendering for missing content (e.g. revert to English)
e RTL (right-to-left) layout support and font/script adaptation

e Scoped override access (e.g. local brand teams manage their own
language)

¢ Shared translation memory to maintain consistency and accelerate rollout

Core Features
e Translation engine integration with memory and manual override Ul
e CMS and Smart PIM localization sync via structured API contracts
e Locale detection system (IP-based, browser-language, user-preferred)

e Region-specific asset injection (e.g. banners, influencer media, video
subtitles)

e Multi-currency pricing control (converted vs. fixed local pricing, rounding
rules)

e Dynamic SEO metadata generator (localized titles, descriptions, hreflang
tags)

e Canonical URL logic to ensure proper indexation by language

¢ Real-time market switcher (toggle, detection, fallback)

23



e Full RTL support for layout mirroring and Arabic script rendering
e Centralized fallback engine for content and price localization gaps

e Scoped permissions system for brand teams, editors, and translators

Build Details

Frontend: Connected via React context and Next.js locale-aware routing

Backend: Node.js microservice with translation store, pricing logic, and
asset routing

Database: PostgreSQL for locale overrides and settings, Redis for fallback

cache

Translation Engine:
o Primary: DeeplL API for structured and CMS content
o Fallback: Google or Microsoft Translator via abstraction layer

o Includes glossary and translation memory support, integrated into
PIM and CMS override flows

e Integrations:
o CMS Microservice (for localized content and campaigns)
o Smart PIM (for product-level translations and attribute localization)
o SEO Layer (canonical tags, hreflang)
o lryss TV (subtitles, language-tagged video metadata)
o Storefront and Marketplace Frontends

o Payment Gateway and Pricing Modules (for currency control)

Team & Timeline
e Team:
o 1frontend developer (routing, toggles, SEO implementation)

o 1backend developer (translation sync, fallback, pricing logic)

24



o 1content/localization manager (QA, override workflows, translation
memory setup)

e Timeline:
o 5-6 weeks for MVP supporting Marketplace
o 3-4 weeks extension for Storefronts and Iryss TV localization rollout

o Continuous integration with PIM and CMS translation interfaces

Long-Term Notes
e This engine is the single source of truth for all localization behavior in Iryss

e Enables consistent, region-accurate UX across hundreds of brands,
languages, and surfaces

e Supports future expansion into any new geography without frontend
duplication

o Directly improves search performance, campaign relevance, and
conversion by delivering native-language experiences

e Structured to scale with large product catalogs, dynamic campaigns, and
multilingual content velocity

e Translation engine is abstracted, allowing vendor replacement if required
in future without major system refactor

25



10. Marketplace Dashboards System

What it is

The central Ul system for all platform roles Super Admin, Admin, Brand, Vendor,
Reseller, Influencer, and Customer. Each role accesses a tailored dashboard
interface powered by API-driven microservices. These dashboards allow
management of listings, inventory, orders, payouts, analytics, messages, and
storefronts. The dashboards are deployed in three stages:

1. Marketplace Dashboards - for core commerce operations
2. Storefront Dashboards - for direct-to-consumer store control
3. Iryss TV Dashboards - for media and content asset management

Dashboards are built as a unified control layer across all Iryss products, directly
connected to the Product Information Management (PIM) system, OMS,
Payments, and Al layers.

What it enables

Role-based access to operational tools with permission matrix and tiered
visibility

o Full management of listings, inventory, pricing, and variants (via PIM
microservice)

e Real-time order, payout, stock, and traffic visibility

¢ Embedded microservice widgets (e.g. messaging, shipping, analytics, Al
tools)

e Unified user experience across Marketplace, Storefronts, and Iryss TV

e Cross-channel control for multi-surface vendors (e.g., Marketplace +
Storefront)

e Scalable support for thousands of concurrent vendors, brands, and
influencers

e Mobile-optimized access for brands and teams on the move

26



Core Features

Modular, widget-based dashboard layout with microservice plugin support

Full PIM integration: listing creation, product enrichment, and bulk
updates

Super Admin impersonation and role-switching for platform support teams
Global search, advanced filtering, and audit log trails

Tiered internal user roles within each vendor/reseller account (e.g. staff vs
owner)

Central message center with system alerts, chat, and push notifications
Bulk management: orders, payouts, listings, and media
Custom branding options: logos, dark/light modes (Phase 2)

Dynamic dashboard modules per surface (Marketplace, Storefront, TV)

New Enhancements

Workflow Automation Builder (Phase 2):
No-code flow builder to automate common logic (e.g. flag low stock, notify
on sales spike)

Support Panel with Team Access:
Allow brands/resellers to add sub-users with limited permissions (inventory
manager, marketer)

Theme Customization Layer (Phase 3):
Enable visual dashboard customization to match storefront brand identity

Integrations

PIM Microservice: Full control over listings, variants, enrichment, sync
across surfaces

OMS Microservice: Order and returns management
Payments Microservice: Payouts, invoice history, billing logic

Analytics Platform: Sales performance, campaign data, traffic sources

27



e« Messaging Microservice: Buyer, vendor, and internal communication
threads

e Localization Engine: Regional display logic, language toggles, multi-
market support

e Consent Manager & Notification Layer: Ul compliance and messaging
controls

e Al Application Layer: Personalized suggestions, auto-tagging, behavior
scoring

Build Details

¢ Frontend: React (Next.js), modular layout system with context-driven
rendering

o Backend: Node.js/Nest]S, consuming GraphQL APIs from all microservices
o Design System: Shared Ul component library (e.g., Tailwind, ShadCN/UI)

o Authentication & Permissions: JWT/GraphQL-based access with role
hierarchy

e Mobile Optimization: Fully responsive from Phase 1

Team & Timeline

¢ Phase 1- Marketplace Dashboards:
2 Frontend Developers
1 Backend Engineer
1 UI/UX Designer
Timeline: 6-8 weeks

e Phase 2 - Storefront Dashboards:
Extend existing team
Timeline: 5-6 weeks

e Phase 3 -Iryss TV Dashboards:
Extend again for media and content management
Timeline: 5-6 weeks

28



Long-Term Notes

e Dashboards act as the main gateway for all vendor and internal
operations

e Maintained as a standalone front-end platform interacting with Iryss
microservices

e Will expand to include future user roles, partner interfaces, and vertical-
specific views

e Fully modular, enabling future features (Al overlays, loyalty controls,
merchandising Ul) to be embedded without rework

11. Data Pooling & Warehouse Infrastructure

What it is

The central data backbone of the Iryss ecosystem. This microservice aggregates,
structures, and continuously updates all platform data including products, users,
orders, campaigns, and engagement signals into a unified warehouse that
powers Al, analytics, personalization, and automation.

What it enables

¢ Real-time and batch ingestion of data from all marketplace, storefront, and
TV interactions

e Clean, queryable structure for downstream Al and analytics services

e Continuous training loops for Al microservices (e.g., personalization, fraud
scoring, outreach targeting)

o Data segmentation and metric availability across dashboards, scoring
engines, campaign tools, and internal tools

¢ Real-time syncing into tracking, CRM, recommendation engines, and
retargeting systems

e Automated historical data snapshotting for trend analysis and forecasting

29



Core Features

Centralized event ingestion pipelines (Kafka / event bus) from all services
Schema-normalized warehousing of product, order, user, and media data
Preprocessing engine for data cleaning, enrichment, and transformation
Role-based querying layer for internal tools and dashboards

Historical archiving and snapshot logic for time-series analysis

Al-ready dataset formatting for model training and model serving

Secure and scalable infrastructure with access control and audit trails

Build Details

Infrastructure: Snowflake, BigQuery, or Redshift for warehousing; Kafka or
AWS EventBridge for pipeline logic

ETL Layer: dbt or custom scripts for transforming raw events into
structured tables

Hosting: Managed cloud infrastructure with autoscaling and redundancy

Data Security: Role-based access, encryption, and audit logging built in

Integrations

Al microservices (recommendation, scoring, automation)
Marketplace dashboards, campaign manager, product feed system
Tracking and attribution engines

Third-party analytics or Bl tools (e.g., Looker, Metabase)

Internal CRM or segmentation tools

Team & Timeline

Team: 2 data engineers, 1 backend engineer, 1 part-time data analyst

Build Time: ~6-8 weeks for vl infrastructure and pipelines, followed by
continuous enrichment

30



Long-Term Notes

e This infrastructure is the core of Iryss’s self-learning flywheel: it
continuously ingests platform-wide data, feeds Al microservices, collects
output and feedback, and retrains models over time to drive compounding
optimization

e Powers every downstream service that requires structured, up-to-date
data: personalization, automation, scoring, outreach, ads, analytics, and
fraud signals

e Built to scale as a central brain for all current and future microservices
designed for adaptability and modular evolution

e Enables Al-driven commerce by turning all platform activity into structured
intelligence loops, allowing the system to autonomously optimize store
operations, catalog merchandising, customer journeys, and revenue
performance over time

12: Analytics & Insights Platform

What it is

The Analytics & Insights Platform is a centralized, queryable microservice that
delivers real-time and historical metrics across all parts of the Iryss ecosystem. It
powers every business intelligence function and is the backbone of performance
visibility, optimization feedback, and data-driven decision-making across roles
(Admin, Brand, Reseller, Influencer, Customer).

What it enables

e Unified analytics layer used by dashboards, storefronts, campaign
manager, and admin panels

e Custom KPIs, trend reports, and benchmarks per brand, channe|,
campaign, or cohort

e Al training data loops (e.g. conversion rates by segment, price elasticity
models)

e A/Btesting, channel attribution, and storefront-level performance visibility

31



¢ Real-time feedback on ad ROAS, reseller behavior, customer funnel drop-
off

e Self-service analytics widgets embedded across dashboards

e Central audit trail of platform activity, behavior patterns, and role-specific
metrics

Core Features
e Queryable metrics API for any frontend or third-party tool

Segmented cohort analysis (by vendor, role, traffic source, region, etc.)

e Sales funnel tracking (session to checkout, by storefront or campaign)

e Campaign analytics (clickthroughs, ROAS, conversions, attribution
windows)

e Storefront analytics (customer behavior, top SKUs, bounce rates)

e Trend detection across SKUs, search, and sales velocity

e Time-series dashboards for seasonality and benchmark monitoring
e Predictive overlays for inventory, pricing, and influencer ROI

o A/Btest manager with statistical significance engine

Build Details

o« Backend: Node js or Python with analytics frameworks (e.g. TimescaleDB,
ClickHouse, or BigQuery)

e Storage: Connects directly to Data Pooling & Warehouse Infrastructure
(Project 11)

e API Layer: GraphQL or REST interface to serve metrics to dashboards, apps,
and services

e Security: Role-based access to metrics (e.g. vendor can only see their own
data)

e« Compliance: Consent-aware and cookie-filtered to match GDPR and
Consent Manager (Project 17)

32



Integrations

e Feeds into: Dashboards System (Project 10), Storefronts (Project 13),
Campaigns/Ads (Project 4), Al Layer (Project 14)

e Draws data from: Data Pooling & Warehouse (Project 11), Orders, Payouts,
Traffic, Events

e Optional: Integration with Looker, Metabase, or custom Bl Uls if needed

Team & Timeline

e Team:1Data Engineer, 1 Backend Engineer, 1 Frontend Engineer (for

dashboard widgets)

e Timeline: ~6 weeks for MVP (API, core metrics, live feeds); +2 weeks for A/B

testing + cohort manager

Long-Term Value

e Enables real-time monitoring, business optimization, and Al feedback

loops
e Reduces support requests through vendor self-service insights

e Forms the intelligence layer behind revenue-generating decisions (e.g. ad

spend, inventory allocation, discounting strategy)

e Critical to transforming Iryss into a self-optimizing commerce platform
with continuously improving performance

33



13. Storefronts Infrastructure (Shopify Alternative)

What it is

The Iryss Storefronts system is a fully modular, no-code website infrastructure
that allows any approved brand, reseller, or influencer to launch their own direct-
to-consumer web store within minutes. These storefronts are built as a connected
extension of the Iryss commerce ecosystem sharing inventory, orders, marketing
assets, Al features, and analytics with the main marketplace and platform
microservices. Designed to match or exceed Shopify in ease of use, this
infrastructure delivers high-level automation, personalization, and intelligent
product and campaign management with minimal effort from the user.

What it enables

e Unified commerce control: Brands can manage their Iryss Marketplace
listings and their own storefront from a single dashboard.

e Lightning-fast setup: No-code builder and default templates make it
possible to launch a store in minutes.

e Full automation and personalization: Storefronts self-optimize over time
using the Iryss Al engine (e.g. smart pricing, product highlights, content
blocks).

e Content and media sync: CMS and Iryss TV integrations allow rich visual
merchandising, video banners, and influencer reels on storefronts.

e Channel-wide data sharing: All storefronts feed into and learn from the
centralized data pool, training the Al engine and enhancing
recommendation accuracy.

e SaaS-ready model: Storefronts can be monetized via subscription, made
public-facing for non-marketplace brands, or offered as white-label
solutions.

Core Features

e Drag-and-drop no-code storefront builder (layout blocks, product sections,
hero banners)

e Shared inventory sync with Marketplace via Middleware

34



Integrated checkout, shipping, returns, and taxes via OMS & Payments

microservices

¢ CMS-managed content: homepage, collection pages, product templates,
campaigns

Smart merchandising (Al-driven cross-sell, trending blocks, price drop

badges)

Built-in localization: multi-language, currency switcher, market-specific
inventory

Integrated analytics: visitor data, funnel tracking, conversion rates

Iryss TV video embedding: live episodes, reels, brand promos

Chat/messaging: customer interaction tools pulled from Messaging

microservice

Consent & cookie banners embedded automatically

Theme customization and custom domains (via SaaS mode)

Optional storefront subscription tiers and billing (future)

Build Considerations
¢ Three-phase rollout:

1. MVP Launch: Using existing CMS and Deity Studio logic to build the
first connected storefronts with shared product sync.

2. UX Expansion: Customization tools, analytics view, customer

messaging, Al merchandising.

3. SaaS Mode: White-label access, public storefront onboarding, tiered
subscriptions, and standalone operations.

e Connected Microservices:
o CMS Microservice: Controls layout, content, and media blocks.
o Localization Engine: Language, currency, and regional logic.
o Payments Microservice: Unified checkout and invoicing.
o Al Application Layer: Merchandising, pricing, scoring,

recommendations.

35



o Analytics Platform: Dashboards and conversion analysis.
o Iryss TV Distribution API: Embedded video and media tools.

o Consent, Notification, Messaging Microservices: Compliance an
user interaction.

Team & Timeline

e Team Required:
o 1Frontend Engineer (Ul builder, React/Next.js)
o 1Backend Engineer (sync logic, domain setup, SaaS handling)
o 1UX/UI Designer (Shopify-grade templates and builder UX)
o 0.5 DevOps (containerization, DNS, scaling)

« Estimated Timeline:
o MVP Storefronts: 6-8 weeks
o Full UX + Al Expansion: 6 weeks

o Saa$s Launch: 4-6 weeks (if activated)

14. Al Application Layer (Personalization &
Automation)

What it is

The core intelligence engine of the Iryss platform this microservice centralizes
and powers all Al functionality across Marketplace, Storefronts, and Iryss TV. It
transforms raw behavioral, transactional, product, and marketing data into
actionable automation. It enables personalization, decision-making, predictive

logic, and continuous optimization. This is the foundation of Iryss’s self-learning,
Al-native commerce OS.

d

36



What it enables

e Personalization of all user touchpoints: homepage, search, banners,
content, and notifications

e Smart automation of backend operations: tagging, pricing, onboarding,
curation, scoring, fraud flags

e Continuous self-learning from every user, order, return, product update,
and campaign

e Data activation across all channels and microservices through API calls or
event-driven triggers

e Intelligent storefront configuration and merchandising without human
input

Core Features

e« Al Recommendations Engine: Learns from views, adds to cart, and
purchases to optimize product feeds

e« Dynamic Pricing Engine: Adjusts prices based on demand, competitor
scraping, sell-through, and margin targets

e Smart Product Tagging: Classifies product attributes from imagery, text,
and known data powering search and SEO

e Al Description & Copy Generator: Auto-generates localized product text,
banners, and content blocks

e Auto-Merchandising Engine: Curates categories, storefront layouts, and
promotional placements using real-time data

e Reseller Fit Engine: Recommends ideal products for each reseller based
on their niche, audience, and performance

e Buyer Scoring & Segmentation: Categorizes users by behavior, value,
fraud risk, or likely future purchase intent

o Reseller/Influencer Scoring: |[dentifies top performers, underperformers,
and content/brand fit using data from multiple services

e« Onboarding Optimization Bot: Uses real-time behavior to guide brands
and resellers step-by-step through setup

37



e Fraud Signal Engine: Flags orders based on return abuse, payment
behavior, device fingerprinting, and anomaly detection

e« Campaign Feedback Loop: Measures performance of creative assets,
influencer content, and ad segments to improve future delivery

e Self-Learning Feedback Hooks: Embedded across microservices to
update scoring, tagging, personalization, and risk detection in real-time

e Optional Future Features:
o Smart size/fit recommnmender
o Product design suggestion engine

o Forecasting for production quantities

Al Deployment Model

e Training Layer: Central model training based on structured data from the
Data Pooling & Warehouse system

o Inference Layer: Deployed Al models accessible to any microservice via API
or event triggers

e« Segmentation Logic: All outputs tailored by platform (Marketplace,
Storefront, Iryss TV) and user role (admin, brand, customer, etc.)

e Continuous Optimization: Every interaction improves model accuracy,
forming a true self-improving commerce OS

Build Details

o Data Ingested From: Product updates, user sessions, orders, returns,
campaign logs, reviews, influencer media

o Data Output To: CMS, Dashboards, Middleware, TV content sorting,
Storefront auto-layout, etc.

e Integration Points: Touches nearly all Iryss microservices each one is Al-
infused and continuously feeds back into the loop

38



Team & Timeline
e Team:
o 1Lead Al Engineer (architecture, model selection, feature strategy)
o 1Data Engineer (data flow pipelines, labeling, preprocessing)
o 1Backend Engineer (service APIs, event triggers, inference layer)

o 0.5 Frontend Engineer (Ul embedding: personalization, pricing,
scores)

e Timeline:
o MVP (Recommendations, Tagging, Pricing, Onboarding): 8 weeks

o Phase 2 (Scoring Engines, Auto-Merchandising, Risk Layer): 6-8
weeks

o Ongoing: Continuous training, refinement, and expansion of use
cases

Final Notes

e Thisis the central optimization engine of Iryss. Every service is either
feeding it or benefiting from it.

e This project creates long-term defensibility by enabling Al-native
commerce not just Al-added.

e The value compounds with every brand, product, user, and reseller added.

o Fully modular: future Al tools (design engine, personalization-as-a-service,
custom GPTs) plug in here.

39



15. Event & Notification Microservice

What it is

A real-time trigger and messaging engine that powers all alerts, nudges, and
status changes across the Iryss ecosystem. This microservice listens for platform
events (e.g. order placed, product out of stock, return approved, payment
completed), then broadcasts actions via email, SMS, in-app Ul, or webhook. It
supports both transactional and behavioral logic and integrates with Al-driven
nudges and automations.

What it enables

¢ Seamless communication across user roles (vendors, brands, resellers,
shoppers)

e Real-time operational updates (order events, payment updates, delivery
alerts)

e Platform-wide messaging automation (abandoned carts, review requests,
payout notices)

e Smart customer nudges using Al-scored actions (timing, tone, content)
e Reseller alerts for new uploads, restocks, or marketing materials
¢ Influencer notifications for performance updates or campaign tasks

e Developer and admin logs for infrastructure or workflow errors

Core Features
e Unified event bus (Kafka or RabbitMQ) to capture platform-wide events
e Custom rules engine to define triggers, conditions, and actions
e Template builder for dynamic emails, SMS, and push messages
e Multi-channel delivery with fallback logic
e Time-based scheduling (e.g. delay send, retry logic, drip campaigns)
o User-level preference center (opt-in, opt-out, frequency control)

e Admin panel for monitoring, logs, and delivery performance

40



Localization and language auto-matching for message templates
Webhook triggers for external system alerts (ERP, CRM, 3PL, etc.)

Notification hooks for internal Uls (storefront dashboard, marketplace,
mobile apps)

Build Details

Backend: Node.js or Python microservice, powered by Redis queues or
Kafka streams

Frontend: Admin Ul in React for rules, templates, and performance logs

DB: PostgreSQL or MongoDB for template storage, logs, and delivery
analytics

External Services:
o Email (e.g. SendGrid, Mailgun)
o SMS (e.g. Twilio, Vonage)

o Push (e.g. Firebase, OneSignal)

Team & Timeline

Team: 1 backend, 1 frontend

Build Time: ~4 weeks for core event engine, channel integration, and
admin panel

Post-Launch: Add advanced logic (e.g. multivariate testing, send time
optimization), webhook APIs, message score tuning

Long-Term Use

Powers every Iryss notification or alert from marketplace to TV to
storefronts

Forms the automation layer for future Al-driven personalization (send the
right message at the right moment)

Can eventually support promotional campaigns, loyalty nudges, and Al-
generated comms

A



16. Consent, Cookie & GDPR Manager

What it is

A centralized microservice responsible for capturing, storing, and enforcing user
consent across all Iryss properties Marketplace, Storefronts, and Iryss TV in
compliance with EU GDPR, ePrivacy Directive, and global privacy standards. It
governs all cookies, trackers, and personalized services based on real-time
consent state and provides granular control for both end users and platform
admins.

What it enables

e Full legal compliance with GDPR, ePrivacy, CCPA, and other data
protection frameworks

e Dynamic cookie banners and consent modals localized by region

e Real-time enforcement of opt-in/opt-out for marketing, tracking, and
personalization

e Persistent consent storage linked to user session, device, and account

o Consent-based activation of Al services, retargeting pixels, and data
sharing

e Audit trail and proof of consent for regulatory review

e Configurable admin dashboard to define consent categories, integrations,
and policies

Core Features

e Real-time consent state engine API queries return per-session status
(granted, denied, pending)

e Geo-based display rules for banners (EU, UK, US, etc.)

e Cookie category management (Essential, Performance, Marketing,
Personalization)

e Integration with third-party tools: Google Tag Manager, Meta Pixel, TikTok
Pixel, Segment

42



e Multilingual consent banners with auto-detection of user language

e Backend service to activate/deactivate scripts and Al functions based on
user choices

e Consent log database with timestamps, versions, and status updates

¢ Admin interface to manage banner design, consent text, and integration
scripts

e Syncs across devices for logged-in users (browser, app)
e Soft opt-in tracking and grace period support for email and retargeting

e Links with Preference Center and Account Settings for user review and
changes

Build Details

e Frontend: Consent modal + banner in React, localized and dynamically
loaded

o« Backend: Node.js microservice with Redis or PostgreSQL for session
storage and API responses

« Storage: Encrypted database for consent logs, status, and user/device
mapping

 Middleware: Connected to Tag Manager, server-side script manager, and
event queue

o Legal Base Management: Predefined logic for GDPR Article 6 (Consent,
Legitimate Interest, Contract)

Team & Timeline
e Team:1frontend (modal/Ul/logic), 1 backend (APl/state engine)

e Build Time: ~4 weeks for core MVP with frontend Ul, backend state sync,
and GTM integration

e Post-Launch: Add consent versioning, region-based customization, and
regulatory dashboard for audit exports



Long-Term Use

e Acts as the privacy compliance backbone across all future Iryss surfaces
(web, mobile, TV)

e Enables conditional loading of future Al features, personalization, or paid
ad tools

e Protects Iryss from regulatory risk while allowing intelligent tracking where
legally permitted

17. Messaging & Chat Microservice

What it is

A secure, real-time messaging engine enabling structured communication
between users across the Iryss platform. Designed to support marketplace
interactions (buyers, sellers, resellers), B2B conversations (brands e resellers), and
storefront-native messaging (customer & brand). The system supports both
synchronous and asynchronous messaging with full audit, role permissions, and
notification triggers.

What it enables
e In-platform conversations without third-party tools

e Role-based access (e.g. vendors can't chat directly with customers unless a
purchase is made)

e Threaded communication between any two valid parties: resellerobrand,
buyerevendor, Irysseoseller

e Escalation logic for disputes or flagged content

e Internal communication (e.g. Iryss team o vendors/resellers)

44



Core Features

Threaded chat by role and transaction
e.g."Order #98765 — Buyer o Brand" or "Reseller & Brand — Product Inquiry"

Smart message routing
Dynamic creation of threads based on user action (purchase, wishlist
inquiry, etc.)

Real-time delivery
WebSocket or server-sent events with fallback to polling for low-resource
environments

Mobile & Desktop compatibility
Integrated natively into Iryss Marketplace, Storefronts, and Iryss TV mobile

apps

Multi-language message templating
Smart pre-filled templates based on user region and intent (e.g., return,
sizing query)

Notifications system integration
Triggers email/push/SMS alerts for unread messages or critical updates

Moderation tools
Spam filtering, block/report functionality, Iryss moderator access

Al assistance hooks (optional future use)
Ability to embed generative Al for support auto-replies or FAQ surfacing

Escalation workflows
Message flagging leads to Iryss team intervention or automatic dispute
escalation

How it connects to the platform

Embedded in all user dashboards (Marketplace, Storefront, Admin)
Works across buyer, brand, reseller, influencer, and internal roles
Integrated into the notification microservice and dashboards system

Shared logic across web and mobile (all three apps)

45



Build Details
e Frontend: React chat component (widget-style) with role-based rendering

Backend: Node js service with socket or event bus (e.g., Redis pub/sub,
WebSocket)

Database: MongoDB (message storage), Redis (presence), Elasticsearch
(search in threads)

Security: End-to-end encrypted storage, scoped visibility by user and
thread

Scalability: Horizontally scalable with stateless architecture and message
gueue for delivery

Team & Timeline
e« Team:1frontend, 1 backend,1infra/devops

e Build Time: ~5-6 weeks MVP (core messaging, presence, role threads,
notifications)

e Post-launch: Add auto-translation, Al reply support, storefront-native chat
Ul variant

18. Iryss TV Infrastructure

What it is

A dedicated content infrastructure microservice powering the full backend and
logic behind Iryss TV the video-first media and entertainment layer of the Iryss
ecosystem. It handles creator uploads, branded video content, tagging, encoding,
and syndication into storefronts and marketplace pages. This microservice
enables Iryss to deliver a Netflix-meets-QVC experience with shoppable,
influencer-driven content embedded across all channels.

46



What it enables
e Branded product storytelling through video content
o Creator-driven reels, episodes, or live segments attached to product listings

e Upload, preview, tag, and manage video across Marketplace, Storefronts,
and Iryss TV

e Shoppable video overlays linked to synced product SKUs

e Full syndication into storefronts and external reseller stores

e SEO-friendly and embed-ready video pages with metadata

e Moderation, scheduling, and performance analytics

e Future Al-driven tagging and video content recommendations

e Integration with campaign and product lifecycle workflows for smarter
content use

Core Features
¢ Video Upload Portal for brands, influencers, and internal creators
e Content Management Ul with version control and approval workflow
e Tagging System for product, category, style, creator, season, and mood
e Encoding & Format Optimization (HLS/MP4, mobile-first streaming)
e Live/Pre-Recorded Support for drops, events, or launches
e Embed SDK & Iframe Logic to power syndication across all storefronts
e Metadata Sync to keep video content and product listings unified
o Creator Attribution (track views, sales impact, usage)
e Scheduling, Drafting, and Expiry Logic
e Content Flagging & Moderation Tools

e Performance Analytics Hooks (views, CTR, conversion)

47



Build Details
¢ Frontend: React-based uploader and CMS interface
o Backend: Node.js microservice with REST/GraphQL endpoints

e Media Layer: Cloud storage + CDN (e.g., Cloudflare Stream, Mux, or AWS
MediaConvert)

o Database: PostgreSQL for metadata and tagging; Elastic for fast search
e Security: Role-gated access for upload and editing; CDN token auth

e Infrastructure: Dockerized, horizontally scalable (content storage and
CDN-driven)

Integrations
e CMS Microservice (pulls associated product content for linking)

Storefronts & Marketplace (embed player + autoplay hooks)

Content Distribution API (resellers pull videos and assets)

Analytics & Data Pooling (track watch behavior and feed Al training)

Consent/Cookie Layer (to ensure GDPR-safe video playback)

Team & Timeline
¢ Team:
o 1Frontend Developer (upload Ul, tagging interface, playback logic)
o 1Backend Developer (storage, metadata, APl endpoints)
o 1Media Engineer (encoding, streaming config, CDN setup)
o 0.5 Product/Data Manager (tagging taxonomy, scheduling, QA)
e Timeline:

o MVP (pre-recorded upload, playback, tagging, CMS integration): 6-8
weeks

o Phase 2 (live video, creator dashboards, performmance analytics): +5-6
weeks

48



Long-Term Considerations
e Al-Assisted Tagging of videos based on visuals and speech
e Creator dashboards for performance tracking and revenue attribution
e Add interactive video overlays and live chat integration
e Syndicate videos to external platforms (YouTube, TikTok, affiliate portals)
¢ Expand into branded video series and creator monetization tools

e Deeper linking with Campaign Manager, Al Layer, and Analytics Systems

19. Mobile App - Iryss Marketplace

What it is

A native mobile app for the Iryss B2C marketplace, delivering a seamless
shopping experience to consumers on iOS and Android. Designed to replicate
and enhance the core web functionality discovery, browsing, checkout while
integrating native features like push notifications, biometric login, and real-time
updates. Built with scalability, performance, and entertainment-first commerce in
mind.

What it enables
e On-the-go access to the full Iryss marketplace for end customers
¢ Native speed and experience for better conversion and engagement
e Push-based customer reactivation and campaign performance boosts
e Deep integration with Iryss TV for shoppable content

e Full multilingual and multi-currency support for global usage

Core Features
e Marketplace browsing (category filters, search, personalized feeds)
e Product pages (media-rich, shoppable video, reviews, and specs)

e Add to cart, wishlist, and saved items sync

49



¢ Native checkout (Apple Pay, Google Pay, Klarna, stored cards, etc.)
e Account area (orders, returns, addresses, payment methods)

e Push notifications (order updates, promotions, abandoned cart)

e Integration with Iryss TV (shoppable video episodes and reels)

e Deep link handling for ads, email campaigns, and social sharing

o Offline state handling, biometric login, fast loading Ul

Tech Stack & Build

e Frontend: React Native or Flutter for cross-platform speed and single
codebase

Backend Integration: Connects via GraphQL to the core Deity-based
backend

State Management: Redux or equivalent for user/session/data control

Notifications: Firebase Cloud Messaging (Android), Apple Push
Notification Service (APNs)

Authentication: OAuth2, biometric login (FacelD, fingerprint)

Team & Timeline
e Team:
o 1Mobile Lead Developer
o 1UI/UX Designer (shared)
o 1Backend/API Integrator (shared)
e Timeline:
o MVP in 8-10 weeks

o Feature expansion and testing in parallel with Marketplace launch

50



Long-Term Scope
e In-app live shopping events powered by Iryss TV
e Cartrecovery journeys with predictive messaging
e In-app loyalty and referral modules
e Al personalization and real-time ranking of products

e App Store optimization for global reach

20. Mobile App - Storefronts

What it is

A native iOS and Android mobile application that powers the individual
storefronts created by brands, influencers, and resellers using the Iryss Storefronts
Infrastructure (Shopify Alternative). Each storefront app is white-labeled and
synced in real time with the central Iryss ecosystem, enabling end customers to
browse, shop, and engage directly with their favorite creators and labels via a
native experience.

What it enables

Standalone mobile commmerce for each brand/influencer storefront

e Seamless sync with Marketplace listings and inventory
¢ Real-time app publishing with modular layouts and branded styling

e Native features like push notifications, biometric login, and mobile wallet
checkout

e Accessto Iryss TV media, lookbooks, and product storytelling tools

Core Features

e Branded storefront Ul with custom logo, color palette, and layout

e Product listing pages with filter/sort tools and visual merchandising

51



e Product detail pages with support for Iryss TV videos, multiple images,

swatches
e Cart, wishlist, customer login, order tracking, and return initiation
e Checkout (Apple Pay, Google Pay, Klarna, and standard card options)
¢ Real-time inventory sync with Iryss middleware and marketplace backend
e Push notifications for promotions, restocks, new arrivals
e Shared customer profiles and order history across storefront + marketplace

e Optional “Powered by Iryss” footer and affiliate attribution

Tech Stack & Build

¢ Frontend: React Native or Flutter (configurable theming and layout
builder)

Backend Integration: GraphQL APl and Webhooks from Iryss middleware

Content Delivery: CMS-connected via microservice for banners, pages, and

video

Notifications: Firebase Cloud Messaging, APNs

Custom Branding: Dynamically configured during storefront onboarding

Team & Timeline
o Team:
o 1Mobile Developer
o 1UI/UX Designer (shared across Storefront + TV)
o 1Backend/API Integrator (shared)
e Timeline:
o MVP for storefront browsing and checkout: 6-8 weeks

o Full template system + push logic: 3—-4 weeks post-MVP

52



Long-Term Scope

e In-app curation tools for brand teams to manage products, content, and
collections

e Integration with Iryss TV API to embed promotional videos
e Loyalty, referrals, and customer review collection
e Live chat and CRM extensions

e App Store deployment tools with auto-update capability

21. Mobile App - Iryss TV

What it is

A native mobile app (iOS & Android) for Iryss TV, the video-first, entertainment-led
content platform designed to merge commerce with storytelling. This app allows
users to watch episodes, reels, and product videos from brands, creators, and
influencers and shop directly from them. It's built to support live shopping,
bingeable series, product curation, and interactive media experiences.

What it enables

o ATikTok-style, swipe-based discovery experience for fashion and beauty
products

¢ High-engagement video commerce combining storytelling and shopping
e Live drops, influencer takeovers, and episodic brand features

e Direct product purchasing via embedded links

e Social-style interaction (likes, comments, shares) with analytics

e Seamless sync with Iryss product catalog and storefronts

e Real-time audience data for improving content and conversion

53



Core Features

Swipe-based video feed for reels, mini-episodes, and live content
Tap-to-shop overlays on all video content

Creator and brand profile pages with follow options

Live shopping mode with countdown timers and inventory updates
Shop-the-look feature for multi-item video tagging

Personalized video feed powered by Al viewing behavior

Integrated push notifications for live content and product drops
Link-outs to marketplace or storefronts for extended browsing

Deep CMS and Iryss TV backend integration for easy video management

Tech Stack & Build

Frontend: React Native or Flutter with video-optimized UX

Backend Integration: Pulls data and video assets from Iryss TV
Infrastructure

Video Delivery: Uses CDN with HLS/MP4 for fast global playback
Checkout Integration: Deep links into marketplace or storefront flows

Recommendation Engine: Tied to Al Application Layer for feed
personalization

Team & Timeline

Team:
o 1Mobile Developer (video and Ul-heavy)
o 1Backend Integrator (Iryss TV sync, product feed connection)
o 1UI/UX Designer (shared with Storefronts TV content team)
Timeline:
o MVP (video feed, tap-to-shop, CMS integration): 6 weeks

o Fulllaunch (live mode, personalization, content sync): +4-5 weeks

54



Long-Term Scope
e Creator affiliate monetization with dashboard tracking
e Shoppable series and cross-series promotions
e Integration into influencer storefronts
e UGC support and creator submissions

e In-app social community layer (comments, reactions, shares)

22. POS & In-Person Sales System

What it is

The Iryss POS (Point-of-Sale) System is a mobile-first, hardware-agnostic sales tool

that enables brands to manage in-person retail transactions in physical stores,
pop-ups, and events. Fully integrated with the Iryss backend, it offers real-time
sync with online inventory, unified customer profiles, and seamless order
tracking—bridging offline and online commerce into a single ecosystem.

What it enables
¢ Unified order management across physical and digital channels
e Live inventory syncing with storefronts and marketplace
e Centralized customer purchase history across all sales points
¢ Branded checkout experiences for boutiques, showrooms, and pop-ups
¢ Instant generation of digital receipts, returns, and in-store credits

e Multi-device and location sales enablement under one vendor account

Core Features
e Touch-based checkout interface (tablet/mobile optimized)
e Product barcode/QR scanning and search

e Multi-payment method support (cash, card, mobile wallet, Klarna, etc.)

55



e Receipt printing or email/SMS issuance

e Discount code and promotion application

e Customer lookup (email, phone) and order history view

e Returns, refunds, and exchanges directly from POS

¢ Inventory deduction in real-time across marketplace and storefronts
e Sales reporting dashboard by device, staff, and location

¢ Staff PINs and permission levels for multi-person use

Build Details
« Frontend: React Native tablet/mobile app (with optional web fallback)

o« Backend: Connects to Marketplace OMS, Payments Microservice, Analytics
Platform

e Hardware Compatibility: Built to support card readers, receipt printers,
barcode scanners via Bluetooth or local network (e.g. Square, Stripe
Terminal)

e Inventory Source: Pulls from the Middleware Layer and Storefronts Infra
e Analytics Integration: Tied to Iryss Analytics Platform for unified reporting

e Payments: Handled through existing Payments Microservice (supports
POS methods)

Team & Timeline

e Team:1mobile dev (React Native), 1 backend integrator, optional
QA/devops

e Timeline: ~5-6 weeks for MVP with tablet interface, checkout, and sync

e Optional extensions post-launch: Hardware pairing Ul, advanced reporting,
multi-device sync

56



Long-Term Considerations
e Enables full omnichannel commerce for SME brands

e Can support physical retail rollouts or branded pop-ups across Europe and
MENA

e Loyalty points or in-store CRM features can be layered using Al Application
Layer

e Compatible with both Iryss Marketplace and Storefront infrastructures

o White-label potential for Iryss enterprise clients or partners

23 - Iryss Smart PIM (Product Information
Management System)

What it is

The Iryss Smart PIM is the centralized product data control layer powering all
structured product information across the Iryss ecosystem including the
Marketplace, Storefronts, B2B reseller portal, Iryss TV, and internal tools. It governs
product schema, lifecycle states, enrichment, versioning, localization, campaign
mapping, and omnichannel export. It replaces fragmented product management
with a single, Al-enhanced, multi-tenant infrastructure purpose-built for
marketplace scalability.

What it enables
e Acts as the single source of truth for all SKUs, variants, and metadata

e Powers storefront, marketplace, and Iryss TV listings from one unified
product record

¢ Automates product enrichment using Al tagging and extraction logic
e Supports multi-region product logic (currencies, sizes, languages)
e Streamlines onboarding and editorial workflows at scale

e Enables rich media-linking, influencer attribution, and campaign mapping

57



Provides clean, exportable feeds to all connected systems

Core Features

Master Product Repository

Category-based flexible schema (e.g. fashion, beauty, home)
Variant logic (e.g. size, color, material)

Role-based permissions for brands, staff, and resellers
Lifecycle management: Draft » QA » Published » Expired
Product completeness scoring and visual dashboards
Field-level change logs, versioning, rollback, and diff viewer
Bulk edit engine and mass classification tool

Merging and deduplication engine for brand duplicates or white-label
products

Al Onboarding Tool

Scrapes brand product pages or documents and maps to internal schema
Extracts images, descriptions, SKUs, tags, prices, and dimensions
Auto-classifies into internal taxonomy

Previews onboarding result before approval

Enrichment pipeline triggers automatically post-ingestion

Al-Powered Enrichment

Text and image-based attribute extraction (e.g. neckline, fabric, pattern)
Vision Al detects silhouette, garment type, or packaging
Confidence scoring and per-category calibration

Conflict detection (e.g. “cotton” + “leather”) auto-suppressed

58



e Enrichment fallback logic using brand defaults or taxonomy presets
e Manual override Ul with annotation, history, and review logs

e Reinforcement learning loop from override feedback

Localized Data Layer
e Field-level multilingual support (titles, descriptions, tags)
e Region-specific availability and price visibility
e Local taxonomy alignment per market (e.g. “abaya” vs. “maxi dress”)
e Size mapping matrices for EU/UK/US/MENA formats

e Translation integration via Deepl or equivalent service

Channel-Aware Sync Engine
o Tailored output to Marketplace, Storefronts, B2B, and Iryss TV
¢ Visibility toggles and variant-level channel routing
e Region-specific sync logic for currency, size, and stock

o Draft, QA, and publish states mapped per channel

Feed Generator
e Headless output to:

o Orchestrator (Project 5)
o OMS (Project 6)
o CMS (Project 8)
o Localization Engine (Project 9)
o Search Index (Project 12)
o Storefront Builder (Project 13)
o lryss TV platform (Project 18)

e Webhooks on status change, field update, or publication event



Sync logs with failure handling and retry logic

Media & Campaign Mapping

SKU-level asset linking: images, video, model specs

Campaign tagging, capsule collection grouping, and visual merchandising
metadata

Creator/influencer mapping for Iryss TV and Storefronts

Attribution data fed to CMS and Iryss TV for stories, bios, and show links

Bulk Upload & Import Layer

Spreadsheet import with schema validation and auto-fixes
Per-brand interface with preview, QA, and error suggestions
Auto-triggers Al enrichment after successful ingest

Field mapping interface with smart recommendations

How it connects across the Iryss platform

Marketplace Dashboards (Project 10): Brands manage PIM content via
their dashboard interface; dashboards display completeness, warnings, and
sync history

Storefront Infrastructure (Project 13): All product content for storefronts
flows from PIM,; visibility toggles and localized content apply per storefront

Iryss TV (Project 18): Video drops, capsule launches, and creator content
link to products via PIM metadata

CMS (Project 8): Campaign pages and product stories draw from PIM
content for consistency

Localization Engine (Project 9): Pulls only product-level localized fields;
Ul/local content handled separately

Search & Filters (Project 12): Enriched metadata feeds directly into
Elasticsearch or equivalent

60



System Dependencies

Consumes From:
¢ Brand Onboarding Engine (scraped product data, spreadsheets)
e Al Application Layer (tagging, image analysis, retraining pipeline)
e CMS content imports (for enrichment and reference)

¢ Manual inputs and enrichment feedback from QA teams

Pushes To:

Marketplace Orchestrator (Project 5)

e OMS & Shipping Engine (Project 6)

e CMS Microservice (Project 8)

e Localization Engine (Project 9)

e Search & Filtering Engine (Project 12)
e Storefront Infrastructure (Project 13)

e Iryss TV Infrastructure (Project 18)

Build Details

e Backend: Node js (or NestJS) microservice architecture with modular
pipeline for import, enrichment, sync

e Frontend (admin): React interface for internal teams and brand users
e Storage: PostgreSQL for structured data, object store (e.g. S3) for media

e Al Integration: Python microservice layer calling internal/external models
for attribute extraction

e APIs: REST and GraphQL endpoints for full read/write + webhook
publishing

e Search: Optional Elasticsearch index integration for filters and discovery

o1



Team & Timeline

¢ Team:
o 2 backend engineers (schema + sync logic)
o TAI/ML engineer (enrichment + onboarding)
o 1frontend engineer (Ul for QA/override/import)
o 1product architect (taxonomy + flow design)

e Timeline:
o MVP:10-12 weeks (Al onboarding + enrichment + basic sync)

o Full rollout: +6-8 weeks (localization, campaign mapping, feed logic)

Long-Term Value
e Centralizes and automates product governance for all Iryss surfaces
e Ensures quality, localization, and structure without manual redundancy

e Future-proofs the platform to support thousands of brands and real-time

product changes

e Enables Al-powered workflows that improve with usage, not degrade

Iryss Tech Build Plan - Full Development Timeline & Team
Structure

Total Duration: 36 months
Strategy: 3 microservice projects in parallel at all times

Post-Launch: Every project retains at least one dedicated developer for
maintenance, upgrades, and roadmap features

Philosophy: Rapid parallel delivery with embedded cross-functional teams to
ensure each system scales and improves autonomously

62



Core Development Team Requirements (Build & Post-

Launch)
Role Quantity (Peak Post-Launch
Build) (Maintenance)
Frontend Devs
. 7 4
(React/Next.js)
Backend Devs g 5
(Node.js/NestJS)
Al/ML Engineers 3 2
Full-Stack Developers 4 2
Data Engineers 2 2
DevOps + Site Reliability 2 2
QA Engineers 2 2
UI/UX Designers 2 1
Project Managers 3 1
Notes:

e Frontend devs cover admin panels, dashboards, mobile apps, and all
marketplace/storefront Uls

e Backend devs build and maintain microservices and data flows across the

entire architecture

o Full-stack roles fill gaps, especially on early sprints and interservice
integration

o DevOps ensures high-availability deployments, rollback pipelines,
observability, and scaling

QA engineers support automation and system-level regression coverage

Al engineers work closely with data and backend teams on smart pricing,
personalization, fraud, etc.

Designers and PMs rotate across project groups to ensure consistency and
roadmap alignment

63



Development Timeline - Month-by-Month Execution Plan

Mont Projectsin

Phase hs parallel Notes
Core system setup: dev cockpit,
Phase 1 1-6 Projects 1,2, 3 scraping engine, middleware

infrastructure

Customer acquisition, advertising,
marketplace orchestration

Payments & accounting engine, CMS,
multilingual engine

Marketplace dashboards, data pooling,
analytics engine

25— Storefront system, Al app layer,

Ph Projects 13, 14, 15 . .
ase 5 30 rojects 1o, 14, notifications

Phase2 7-12 Projects 4,5, 6
Phase3 13-18 Projects7, 8,9

Phase 4 1924 Projects10,11,12

Phase 6 31-36 Projectslo, 17,18 Consent/GDPR, real-time chat, Iryss TV

Projects 19-23 Lighter builds handled by mixed

Post- —
ost-36 (apps, POS, fraud)  taskforces

Guiding Logic:

e Build order is determined by logical dependency and commercial
importance (e.g., Al Cockpit » Scraping » Middleware is foundational;
Storefronts come after CMS is live)

e Each microservice is treated as a standalone project with cross-functional
ownership

e Apps and POS are built after core platform maturity to avoid premature
duplication of features

Strategic Execution Notes

e Each project team owns delivery, documentation, post-launch
expansion, and bug handling for their service. This avoids backlogs and
orphaned features across builds.

o Devs rotate to new builds once a project is stable, while one stays
permanently assigned for continuous improvement and support.

e QA is embedded starting in Month 3 and scales as needed for complex
projects (Storefronts, Orchestrator, Al Engine).

64



Design is centralized early to maintain visual consistency across
dashboards, apps, storefronts, and CMS layouts.

Al and data roles work continuously, as training, optimization, and data
feedback loops span the entire system lifecycle.

Parallelization is enforced strictly: Always 3 microservices in concurrent
development unless special integration timing is needed (e.g., POS tied to
Payments).

65



	Iryss Tech Build Plan
	1. Internal AI Developer Cockpit
	2. Web Scraping & Outreach Engine
	3: Universal Middleware Integration Layer
	4. Customer Acquisition Engine
	5. Marketplace Orchestrator & Core Architecture (Deity-Based)
	6. OMS & Shipping Engine
	7. Payments & Accounting Microservice
	8. CMS Microservice (Content Management System)
	9. Localization & Multilingual Engine
	10. Marketplace Dashboards System
	11. Data Pooling & Warehouse Infrastructure
	12: Analytics & Insights Platform
	13. Storefronts Infrastructure (Shopify Alternative)
	14. AI Application Layer (Personalization & Automation)
	15. Event & Notification Microservice
	16. Consent, Cookie & GDPR Manager
	17. Messaging & Chat Microservice
	18. Iryss TV Infrastructure
	19. Mobile App – Iryss Marketplace
	20. Mobile App – Storefronts
	21. Mobile App – Iryss TV
	22. POS & In-Person Sales System
	23 – Iryss Smart PIM (Product Information Management System)
	Core Features
	System Dependencies
	Iryss Tech Build Plan – Full Development Timeline & Team Structure
	Core Development Team Requirements (Build & Post-Launch)
	Development Timeline – Month-by-Month Execution Plan


